题目描述

给定一个 m x n 二维字符网格 board 和一个字符串单词 word 。如果 word 存在于网格中,返回 true ;否则,返回 false

单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母不允许被重复使用。

示例 1:

1
2
输入:board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCCED"
输出:true

示例 2:

1
2
输入:board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "SEE"
输出:true

示例 3:

1
2
输入:board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCB"
输出:false

提示:

  • m == board.length
  • n = board[i].length
  • 1 <= m, n <= 6
  • 1 <= word.length <= 15
  • boardword 仅由大小写英文字母组成

进阶: 你可以使用搜索剪枝的技术来优化解决方案,使其在 board 更大的情况下可以更快解决问题?

解法

  • 回溯法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
class Solution {
public boolean exist(char[][] board, String word) {
int row = board.length;//行
int col = board[0].length;//列
boolean[][] visited = new boolean[row][col];//标识单次路径搜索是否访问过当前元素
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
//遍历单词在字母板的起始地址
boolean flag = check(board, word, visited, i, j, 0);
if (flag == true) {
return true;
}
}
}
return false;
}

/**
* dfs
*
* @param board 字母板
* @param word 匹配单词
* @param visited 单次路径搜索是否经过
* @param i 位置x
* @param j 位置y
* @param k 第几个字符
* @return
*/
public boolean check(char[][] board, String word, boolean[][] visited, int i, int j, int k) {
//1.定义递归出口
if (board[i][j] != word.charAt(k)) {
//先判断是否相等
return false;
} else if (k == word.length() - 1) {
//假如是最后一个,直接返回
return true;
}

boolean result = false;
visited[i][j] = true;//标识当前已经访问过
int[][] directions = {{0, 1}, {0, -1}, {-1, 0}, {1, 0}};//移动方向 上下左右

for (int[] dir : directions) {
int x = i + dir[0];
int y = j + dir[1];
//x,y在可行范围内[0,len-1]
if (x >= 0 && x < board.length && y >= 0 && y < board[0].length) {
//同一起点下之前是否访问过当前位置
if (!visited[x][y]) {
boolean flag = check(board, word, visited, x, y, k + 1);
if (flag) {
result = true;
break;
}
}
}
}
visited[i][j] = false;
return result;
}

}
  • 时间复杂度:

$$
O(MN \cdot 3^L)
$$

来源:力扣(LeetCode)
链接:79. 单词搜索 - 力扣(LeetCode)

链接:剑指 Offer 12. 矩阵中的路径 - 力扣(LeetCode)